

•le chitrung

OSI Layer

- Model of communication
- The OSI model
- The TCP/IP model

MODEL OF COMMUNICATION

Networking History

- Standalone Device.
 - Duplication of equipments and resources.
 - Inability to communicate efficiently.
 - Lack of networking management.
- LAN.
 - Connects devices that are close together.
- WAN.
 - Interconnects LANs across a large area.

Analyzing network in layers

Communication

- Transmission of information.
- Examples:
 - Speaking.
 - Smoke signal.
 - Body language.
 - Morse.
 - Telephone.
 - Broadcast systems (radio, television).
 - Internet

Communication process

Communication characteristics

Addresses

– Who are the source and the destination of a communication process?

Media

– Where is the communication take place?

Protocols

– How to make the communication process effectively?

Communication: Human conversation

- Address
 - Hello Mr.A, I am B
- Media
 - Atmosphere
- Protocol
 - Language
 - Speed
 - Handshaking

Data Communication

Address

Source address, Destination address

- Media
 - Cable, Fiber, Atmosphere
- Protocol
 - Format
 - Procedure

Protocol

 Protocol is a set of rules, or an agreement, that determines the format and transmission of data that make communication on a network more efficient.

Protocol examples

- In transportation
- In communication
- In social

Communication Process.

• What is Protocol ?

OSI MODEL

Evolution of networking standards

- Researched and developed by the ISO -International Organization for Standardizations
- 1977: establish a subcommittee to develop a communications architecture.
- 1984: publish ISO-7498, the Open System Interconnection (OSI) reference model.

OSI model

- The OSI model: a framework within which networking standards can be developed.
 - It provided vendors with a set of standards that ensured greater compatibility and interoperability between the various types of network technologies that were produced by the many companies around the world.

Proprietary vs. Open

A layered model

- The communications functions are partitioned into a hierarchical set of layers.
- Each layer performs a related subset of the functions required to communicate.
- Each layer relies on the next lower layer to perform more primitive functions and provides services to the next higher layer.
- The OSI Model define a set of layers and the services performed by each layer

- Reduces complexity.
- Standardizes interfaces.
- Facilitates modular engineering.
- Ensures interoperable technology.
- Accelerates evolution.
- Simplifies teaching and learning.

7 layers of the OSI reference model

• All People Seem To Need Data Processing

- Transmission of an unstructured bit stream over a physical link between end systems.
 - Electrical, mechanical, procedural and functional specifications
 - Physical data rate
 - Distances
 - Physical connector

- Provides for the reliable transfer of data cross a physical link.
 - Frames
 - Physical address
 - Network topology
 - Line discipline
 - Synchronization
 - Error control
 - Flow control

- Provides connectivity and path selection between two host systems that may be located on geographically separated networks.
 - Packets
 - Virtual circuits
 - Route, routing table, routing protocol
 - Logical address
 - Fragmentation

- Provides reliable, transparent transfer of data over networks.
 - Segments, data stream, datagram
 - Connection oriented and connectionless
 - End-to-end flow control
 - Error detection and recovery
 - Segmentation & reassembly

- Establishes, manages, and terminates sessions between two communicating hosts.
 - Sessions
 - Dialog
 - Conversations
 - Data exchange

The presentation layer

- Ensures that the information that the application layer of one system sends ou is readable by the application layer of another system.
 - Format of data
 - Data structure
 - Data conversion
 - Data compression
 - Data encryption

- Is the OSI layer that is closest to the user it provides network services to the user's applications.
 - File transfer
 - Electronic mail
 - Terminal access
 - Word processing
 - Intended communication partners

Encapsulation example: Air-mail

Encapsulation example: E-mail

Encapsulation

Layer-to-layer communications

Peer-to-peer communications

Protocols

- Is a formal set of rules and conventions that governs how computers exchange information over a network medium.
- Implements the functions of one or more of the OSI layers.
- A communication protocol is concerned with exchanging data between two peer layers.
- Protocol Data Units (PDUs) : Block of data that a protocol exchange.

- OSI Reference Model.
- Function of 7 layers.
- Encapsulation process.
- Peer-to-peer communications.

TCP/IP MODEL

TCP/IP model development

- The late-60s The Defense Advance Research Projects Agency (DARPA) originally developed Transmission Control Protocol/Internet Protocol (TCP/IP) to interconnect various defense department computer networks.
- The Internet, an International Wide Area Network, uses TCP/IP to connect networks across the world.

4 layers of the TCP/IP model

- Layer 4: Application
- Layer 3: Transport
- Layer 2: Internet
- Layer 1: Network access

It is important to note that some of the layers in the TCP/IP model have the same name as layers in the OSI model. Do not confuse the layers of the two models.

- Concerned with all of the issues that an IP packet requires to actually make the physical link. All the details in the OSI physical and data link layers.
 - Electrical, mechanical, procedural and functional specifications.
 - Data rate, Distances, Physical connector.
 - Frames, physical addressing.
 - Synchronization, flow control, error control.

- Send source packets from any network on the internetwork and have them arrive at the destination independent of the path and networks they took to get there.
 - Packets, Logical addressing.
 - Internet Protocol (IP).
 - Route , routing table, routing protocol.

- The transport layer deals with the quality-of-service issues of reliability, flow control, and error correction.
 - Segments, data stream, datagram.
 - Connection oriented and connectionless.
 - Transmission control protocol (TCP).
 - User datagram protocol (UDP).
 - End-to-end flow control.
 - Error detection and recovery.

The application layer

- Handles high-level protocols, issues of representation, encoding, and dialog control.
- The TCP/IP combines all applicationrelated issues into one layer, and assures this data is properly packaged for the next layer.
 - FTP, HTTP, SMNP, DNS ...
 - Format of data, data structure, encode ...
 - Dialog control. session management ...

TCP/IP protocol stack

Comparing TCP/IP with OSI

Comparing TCP/IP with OSI (cont.)

Similarities:

- Both have layers.
- Both have application layers, though they include very different services.
- Both have comparable transport and network layers
- Packet-switched technology is assumed.
- Networking professionals need to know both.

Comparing TCP/IP with OSI (cont.)

Differences:

- TCP/IP combines the presentation and session layer issues into its application layer.
- TCP/IP combines the OSI data link and physical layers into one layer.
- TCP/IP appears simpler because it has fewer layers.
- Typically networks aren't built on the OSI protocol, even though the OSI model is used as a guide.

• Comparing TCP/IP with OSI.

Summary

OSI Model	OSI Model Name	Pneumonic	Equipment	Equipment Purpose	Data	Protocols	Words to Remember	TCP/IP Model
Layer 7	Application	All		Regular	-	Redirector,	Browsers	2
Layer 6	Presentation	People	Computer	computer or a special gateway. Used		FTP, Telnet, SMTP, SNMP, Netware Core,	Common Data Format	Applicati
Layer 5	Session	Seem		to combine networks using different	Data	NFS, SQL, RPC, X-Win	Dialogues Conversations	
Layer 4	Transport	То	Computer	communication protocols	Segment	TCP and UDP	QoS Reliability	Transpo
Layer 3	Network	Need	Router	Segment Network into Smaller <i>Broadcast</i> Domains	Packet	Routable Protocols. IP, IPX, AppleTalk	Path Selection Routing Addressing	Interne
Layer 2	Data Link (LLC, MAC)	Data	Bridge Switch NIC	Segment Network into Smaller <i>Collision</i> Domains	Frame	NDIS, ODI, MAC Address, Ether Talk	Frames Media Access Control (MAC)	Networ Acces
Layer 1	Physical	Processing	Repeater Hub Cabling	One Collision AND One Broadcast Domain	Bit	Physical	Signals Media	